NO FREE LUNCH, BAYESIAN INFERENCE, AND UTILITY: A DECISION-THEORETIC APPROACH TO OPTIMIZATION by
نویسندگان
چکیده
NO FREE LUNCH, BAYESIAN INFERENCE, AND UTILITY: A DECISION-THEORETIC APPROACH TO OPTIMIZATION Christopher Kenneth Monson Department of Computer Science Doctor of Philosophy Existing approaches to continuous optimization are essentially mechanisms for deciding which locations should be sampled in order to obtain information about a target function’s global optimum. These methods, while often effective in particular domains, generally base their decisions on heuristics developed in consideration of ill-defined desiderata rather than on explicitly defined goals or models of the available information that may be used to achieve them. The problem of numerical optimization is essentially one of deciding what information to gather, then using that information to infer the location of the global optimum. That being the case, it makes sense to model the problem using the language of decision theory and Bayesian inference. The contribution of this work is precisely such a model of the optimization problem, a model that explicitly describes information relationships, admits clear expression of the target function class as dictated by No Free Lunch, and makes rational and mathematically principled use of utility and cost. The result is an algorithm that displays surprisingly sophisticated behavior when supplied with simple and straightforward declarations of the function class and the utilities and costs of sampling. In short, this work intimates that continuous optimization is equivalent to statistical inference and decision theory, and the result of viewing the problem in this way has concrete theoretical and practical benefits.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Bayesian Decision-Theoretic Dose-Finding Trial
We describe the use of a successful combination of Bayesian inference and decision theory in a clinical trial design. The trial involves three important decisions, adaptive dose allocation, optimal stopping of the trial, and the optimal terminal decision upon stopping. For all three decisions we use a formal Bayesian decision-theoretic approach. The application demonstrates how Bayesian posteri...
متن کاملObserving the Observer (II): Deciding When to Decide
In a companion paper [1], we have presented a generic approach for inferring how subjects make optimal decisions under uncertainty. From a Bayesian decision theoretic perspective, uncertain representations correspond to "posterior" beliefs, which result from integrating (sensory) information with subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") funct...
متن کاملObserving the Observer (I): Meta-Bayesian Models of Learning and Decision-Making
In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the p...
متن کاملBayesian decision theoretic multiple comparison procedures: an application to phage display data.
We discuss a case study that highlights the features and limitations of a principled Bayesian decision theoretic approach to massive multiple comparisons. We consider inference for a mouse phage display experiment with three stages. The data are tripeptide counts by tissue and stage. The primary aim of the experiment is to identify ligands that bind with high affinity to a given tissue. The inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006